A construção de um modelo de carteira sempre será um tema de maior importância na modelagem financeira. A moderna teoria da carteira introduzida por Harry Markowitz em 1952 é um modelo de média-variância (MV) para avaliar uma carteira de ativos no qual a função objetivo é maximizar o retorno esperado (média) para um determinado risco (variância) ou para minimizar esse risco para um determinado retorno.
Dado o fato de que a maioria dos modelos usados até hoje são os mesmos que abriram este campo de estudo na década de 1950 (tais como o modelo Markowitz de seleção de carteira e o modelo CAPM de precificação de ativos) e conforme a hipótese de mercado eficiente se torna cada vez mais contestada por economistas comportamentais, novas abordagens para o modelo parecem necessárias.
Com o desenvolvimento das finanças quantitativas, mais modelos surgem tentando explicar melhor o comportamento do mercado. Dado o contexto brasileiro de alta volatilidade, é necessário expandir os modelos de alocação de carteira para lidar com dados assimétricos e não-normais.
Essas condições parecem mais presentes em mercados emergentes, desviando-se das premissas de normalidade do modelo clássico de Markowitz. Na verdade, as características mais observadas no contexto brasileiro são a de maior volatilidade e a distribuição enviesada positiva dos retornos. Como as evidências sugerem que as bolsas de valores em mercados emergentes são mais voláteis e menos eficientes devido à distribuição mais assimétrica dos retornos, os investidores inseridos em tais ambientes podem necessitar de ferramentas mais adequadas para operar neste cenário.
As pesquisas desenvolvidas no BAERU expandiram o modelo MV clássico para momentos de ordem superior, evoluindo para um modelo MVSK com análise de assimetria e curtose. Junto com a análise MVSK, nossas pesquisas adicionaram ao modelo uma variável de entropia de informação (E) na esperança de levar em consideração o nível de incerteza intrínseco de um ativo e como ela impacta o retorno esperado.
Dessa forma, focamos na complexidade da criação de um modelo de uma carteira multi-objetivo para ver se podemos realmente fornecer mais informações ao investidor com essa nova modelagem, usando dados da B3 (SA:B3SA3) para o período 2011-2019 extraídos pelo Yahoo Finance. Após o conjunto de treinamento e backtesting do modelo, buscamos validar nosso modelo preditivo testando-o no mercado de 2018-2019 e depois comparando com o modelo de Markowitz como referência (nosso benchmarking), levando a resultados conflitantes, mas interessantes.
Apesar das limitações em relação à complexidade computacional e matemática das funções polinomiais multiobjetivos, o que torna exponencialmente difícil simular para uma quantidade grande de ativos na carteira, concluímos que carteiras naïve (simples) ainda apresentam baixo desempenho em relação às otimizadas em MVSKE, bem como na configuração MV.
A carteira otimizada MVSKE, embora tenha apresentado um bom desempenho em relação as demais carteiras, não apresentou uma diferença estatisticamente significativa entre a carteira otimizada MV – benchmark – apesar de desempenhar melhor em choques e quando há assimetria de informação (ex. precificação de um ativo sem grande consenso por parte dos analistas de mercado).
Uma limitação intrínseca na comparação está entre as carteiras MV e MVSKE deve-se ao fato que a cesta de ativos em cada uma, embora muito semelhante, é diferente nas alocações ótimas, o que torna a comparação direta um pouco viesada. Por outro lado, a comparação com estratégias naïve – pesos iguais - mostra claramente uma significância estatística no desempenho superior dos retornos no modelo MVSKE. Alguns estrategistas podem argumentar em favor de estratégias naïve afirmando que os custos de transação e o rebalanceamento mais frequente mudariam esse cenário, mas isso por enquanto está fora do escopo dos modelos testados.
Mesmo com a hipótese ainda aberta de MVSKE não superar estatisticamente o benchmark, esta primeira tentativa de estudar tal modelo no contexto brasileiro ajudou a criar uma consciência para com metodologias não normais na gestão de carteira e como lidar com tais riscos implícitos que não estão sendo adequadamente avaliados de outra forma. Isso gerou o mesmo tipo de desempenho até certo ponto, mas com a vantagem de ser uma ferramenta mais completa para o gerenciamento de retornos assimétricos que não estão sendo controlados nos modelos MV clássicos.
*Peter F. Wanke
Ph.D. , Coordenador do Business Analytics and Economics Research Unit (BAE RU), Professor do COPPEAD/UFRJ e Coordenador do Programa de Doutorado em Adminsitração de Empresas. Joint Appointment Professor - EBAPE / FGV. Editor associado dos periódicos Socio-Economic Planning Sciences (Elsevier), Tourism Economics (SAGE), International Journal of Islamic and Middle Eastern Finance and Management (Emerald) e da Revista Brasileira de Transportes (FGV). Ele figura ainda no ranking do Journal PLOS Biology dos cientistas mais influentes do mundo e recebeu o prêmio de Outstanding Researcher pela IEOM - Industrial Engineering and Operations Management – Society.